Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Virus Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Virus Research
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Virus Research
Article . 2010
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Virus Research
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Influenza virus budding does not require a functional AAA+ ATPase, VPS4

Authors: Rie, Watanabe; Robert A, Lamb;

Influenza virus budding does not require a functional AAA+ ATPase, VPS4

Abstract

The process of budding of many enveloped viruses utilizes the cellular ESCRT (endosomal sorting complex required for transport) machinery, that is normally involved in the formation of luminal vesicles of endosomal multivesiculate bodies (MVB). A late step in the MVB pathway involves the recruitment of VPS4, an AAA+ ATPase, to the ESCRT complexes. Our earlier work had shown that the formation of influenza virus-like particles was not inhibited by dominant negative VPS4A. However, it was not known if there was a role of VPS4 and the ESCRT pathway in influenza virus particle budding and this needed to be investigated. It was found that neither siRNA knockdown of VPS4A and VPS4B expression nor the use of cell lines that inducibly express VPS4A or VPS4B dominant negative mutants, inhibited influenza virus budding. In contrast, and in keeping with more recent data, vesicular stomatitis virus budding was diminished by VPS4 dysfunction.

Related Organizations
Keywords

Adenosine Triphosphatases, Vacuolar Proton-Translocating ATPases, Endosomal Sorting Complexes Required for Transport, Cell Line, Dogs, Influenza A virus, Cricetinae, Gene Knockdown Techniques, ATPases Associated with Diverse Cellular Activities, Animals, Humans, RNA, Small Interfering, Virus Release

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Top 10%
Top 10%
gold