Powered by OpenAIRE graph

Geographically structured genetic variation in Ptychozoon lionotum (Squamata: Gekkonidae) and a new species from an isolated volcano in Myanmar

Authors: L Lee, Grismer; Perry L Jr, Wood; Myint Kyaw, Thura; Marta S, Grismer; Rafe M, Brown; Bryan L, Stuart;

Geographically structured genetic variation in Ptychozoon lionotum (Squamata: Gekkonidae) and a new species from an isolated volcano in Myanmar

Abstract

A molecular phylogenetic analysis of Parachute Geckos (Genus Ptychozoon Kuhl & van Hasselt, 1822) based on the mitochondrial gene ND2 indicates that a newly discovered population from the Mt. Popa volcano—a habitat island in the northern portion of the Bago Yoma mountains, Myanmar—is a new species, P. popaense sp. nov. This species is part of a clade that contains P. bannanense Wang, Wang, & Liu, 2016 and P. lionotum Annandale, 1905 of Indochina. Ptychozoon popaense sp. nov. is morphologically most similar to its sister species P. lionotum which manifests considerable geographic substructuring of genetic variation but differs from the nominate taxon by an uncorrected pairwise sequence divergence of 16.0–17.1% and by discrete differences in morphology and color pattern. This discovery highlights the unique, insular nature of the Bago Yoma mountains of the Ayeyarwady Basin, which support other endemic gekkonids. It also underscores the growing diversity in this highly derived clade of cryptic, parachuting, geckos characterized by highly divergent genetic lineages, which may indicate the presence of additional, unrecognized species. 

Related Organizations
Keywords

Animals, Genetic Variation, Lizards, Myanmar, Ecosystem, Phylogeny

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 3
  • 3
    views
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
visibility
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
2
Average
Average
Average
3