Network structure shapes the impact of diversity in collective learning
Network structure shapes the impact of diversity in collective learning
AbstractIt is widely believed that diversity arising from different skills enhances the performance of teams, and in particular, their ability to learn and innovate. However, diversity has also been associated with negative effects on the communication and coordination within collectives. Yet, despite the importance of diversity as a concept, we still lack a mechanistic understanding of how its impact is shaped by the underlying social network. To fill this gap, we model skill diversity within a simple model of collective learning and show that its effect on collective performance differs depending on the complexity of the task and the network density. In particular, we find that diversity consistently impairs performance in simple tasks. In contrast, in complex tasks, link density modifies the effect of diversity: while homogeneous populations outperform diverse ones in sparse networks, the opposite is true in dense networks, where diversity boosts collective performance. Our findings also provide insight on how to forge teams in an increasingly interconnected world: the more we are connected, the more we can benefit from diversity to solve complex problems.
Physics - Physics and Society, Science, Communication, Q, R, Medicine, Learning, FOS: Physical sciences, Physics and Society (physics.soc-ph), Article
Physics - Physics and Society, Science, Communication, Q, R, Medicine, Learning, FOS: Physical sciences, Physics and Society (physics.soc-ph), Article
1 Research products, page 1 of 1
- IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
