Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Circulation Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Circulation Research
Article . 1999 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Cardiac Troponin I Gene Knockout

A Mouse Model of Myocardial Troponin I Deficiency
Authors: Patricia A. Powers; Ronald G. Gregg; Anne S. Henkel; Jeffery W. Walker; X.P. Huang; Kevin J. Lee; YeQing Pi;
Abstract

Abstract —Troponin I is a subunit of the thin filament–associated troponin-tropomyosin complex involved in calcium regulation of skeletal and cardiac muscle contraction. We deleted the cardiac isoform of troponin I by using gene targeting in murine embryonic stem cells to determine the developmental and physiological effects of the absence of this regulatory protein. Mice lacking cardiac troponin I were born healthy, with normal heart and body weight, because a fetal troponin I isoform (identical to slow skeletal troponin I) compensated for the absence of cardiac troponin I. Compensation was only temporary, however, as 15 days after birth slow skeletal troponin I expression began a steady decline, giving rise to a troponin I deficiency. Mice died of acute heart failure on day 18, demonstrating that some form of troponin I is required for normal cardiac function and survival. Ventricular myocytes isolated from these troponin I–depleted hearts displayed shortened sarcomeres and elevated resting tension measured under relaxing conditions and had a reduced myofilament Ca sensitivity under activating conditions. The results show that (1) developmental downregulation of slow skeletal troponin I occurs even in the absence of cardiac troponin I and (2) the resultant troponin I depletion alters specific mechanical properties of myocardium and can lead to a lethal form of acute heart failure.

Keywords

Mice, Knockout, Recombination, Genetic, Heterozygote, Heart Ventricles, Myocardium, Homozygote, Troponin I, Heart, In Vitro Techniques, Myocardial Contraction, Mice, Animals, Protein Isoforms, Muscle, Skeletal, Gene Deletion, Muscle Contraction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    146
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
146
Top 10%
Top 10%
Top 1%
bronze