Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geneticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article . 2007 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article
Data sources: UnpayWall
Genetics
Article . 2007
versions View all 2 versions

The Alternative Pathway of Glutathione Degradation Is Mediated by a Novel Protein Complex Involving Three New Genes in Saccharomyces cerevisiae

Authors: Dwaipayan, Ganguli; Chitranshu, Kumar; Anand Kumar, Bachhawat;

The Alternative Pathway of Glutathione Degradation Is Mediated by a Novel Protein Complex Involving Three New Genes in Saccharomyces cerevisiae

Abstract

Abstract Glutathione (GSH), l-γ-glutamyl-l-cysteinyl-glycine, is the major low-molecular-weight thiol compound present in almost all eukaryotic cells. GSH degradation proceeds through the γ-glutamyl cycle that is initiated, in all organisms, by the action of γ-glutamyl transpeptidase. A novel pathway for the degradation of GSH that requires the participation of three previously uncharacterized genes is described in the yeast Saccharomyces cerevisiae. These genes have been named DUG1 (YFR044c), DUG2 (YBR281c), and DUG3 (YNL191w) (defective in utilization of glutathione). Although dipeptides and tripeptides with a normal peptide bond such as cys-gly or glu-cys-gly required the presence of only a functional DUG1 gene that encoded a protein belonging to the M20A metallohydrolase family, the presence of an unusual peptide bond such as in the dipeptide, γ-glu-cys, or in GSH, required the participation of the DUG2 and DUG3 gene products as well. The DUG2 gene encodes a protein with a peptidase domain and a large WD40 repeat region, while the DUG3 gene encoded a protein with a glutamine amidotransferase domain. The Dug1p, Dug2p, and Dug3p proteins were found to form a degradosomal complex through Dug1p–Dug2p and Dug2p–Dug3p interactions. A model is proposed for the functioning of the Dug1p/Dug2p/Dug3p proteins as a specific GSH degradosomal complex.

Keywords

Dipeptidases, Saccharomyces cerevisiae Proteins, Hydrolases, Genetic Complementation Test, Saccharomyces cerevisiae, Glutathione, Models, Biological, Microscopy, Fluorescence, Multiprotein Complexes, Two-Hybrid System Techniques, Immunoprecipitation, Carbon-Nitrogen Ligases, Cloning, Molecular, Transaminases, Peptide Hydrolases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    74
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
74
Top 10%
Top 10%
Top 10%
hybrid