Intersectin-1s Regulates the Mitochondrial Apoptotic Pathway in Endothelial Cells
pmid: 17405881
Intersectin-1s Regulates the Mitochondrial Apoptotic Pathway in Endothelial Cells
Intersectins (ITSNs) are multidomain adaptor proteins implicated in endocytosis, regulation of actin polymerization, and Ras/MAPK signaling. We have previously shown that ITSN-1s is required for caveolae fission and internalization in endothelial cells (ECs). In the present study, using small interfering RNA to knock down ITSN-1s protein expression, we demonstrate a novel role of ITSN-1s as a key antiapoptotic protein. Knockdown of ITSN-1s in ECs activated the mitochondrial pathway of apoptosis as determined by genomic DNA fragmentation, extensive mitochondrial fission, activation of the proapoptotic proteins BAK and BAX, and cytochrome c efflux from mitochondria. ITSN-1 knockdown acts as a proapoptotic signal that causes mitochondrial outer membrane permeabilization, dissipation of the mitochondrial membrane potential, and generation of reactive oxygen species. These effects were secondary to decreased activation of Erk1/2 and its direct activator MEK. Bcl-X(L) overexpression prevented BAX activation and the apoptotic ECs death induced by suppression of ITSN-1s. Our findings demonstrate a novel role of ITSN-1s as a negative regulator of the mitochondrial pathway-dependent apoptosis secondary to activation of the Erk1/2 survival signaling pathway.
- University of Illinois at Chicago United States
- University of Illinois at Urbana Champaign United States
Base Sequence, Cytochromes c, Apoptosis, Mitochondria, Adaptor Proteins, Vesicular Transport, Microscopy, Electron, Microscopy, Fluorescence, In Situ Nick-End Labeling, Humans, Endothelium, Vascular, RNA, Small Interfering, Cells, Cultured, Signal Transduction
Base Sequence, Cytochromes c, Apoptosis, Mitochondria, Adaptor Proteins, Vesicular Transport, Microscopy, Electron, Microscopy, Fluorescence, In Situ Nick-End Labeling, Humans, Endothelium, Vascular, RNA, Small Interfering, Cells, Cultured, Signal Transduction
23 Research products, page 1 of 3
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).52 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
