Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Infec...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Infectious Diseases
Article . 2010 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Mice Lacking Both TNF and IL‐1 Receptors Exhibit Reduced Lung Inflammation and Delay in Onset of Death following Infection with a Highly Virulent H5N1 Virus

Authors: Lucy A, Perrone; Kristy J, Szretter; Jacqueline M, Katz; Joseph P, Mizgerd; Terrence M, Tumpey;

Mice Lacking Both TNF and IL‐1 Receptors Exhibit Reduced Lung Inflammation and Delay in Onset of Death following Infection with a Highly Virulent H5N1 Virus

Abstract

Highly pathogenic avian influenza viruses of the H5N1 subtype continue to cross the species barrier to infect humans and cause severe disease. It has been suggested that an exaggerated immune response contributes to the pathogenesis of H5N1 virus infection in mammals. In particular, H5N1 virus infections are associated with a high expression of the proinflammatory cytokines, including interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF-α).We investigated the compounding affects of both cytokines on the outcome of H5N1 virus disease by using triple mutant mice deficient in 3 signaling receptors, TNF-R1, TNF-R2, and IL-1-RI.Triple mutant mice exhibited reduced morbidity and a significant delay in mortality following lethal challenge with a lethal H5N1 virus, whereas no such differences were observed with the less virulent A/PR/8/34 (H1N1) virus. H5N1-infected triple mutant mice displayed diminished cytokine production in lung tissue and a quantifiable decrease of macrophages and neutrophils in the lungs postinfection. Moreover, morphometric analysis of airway sections revealed less extensive inflammation in H5N1-infected triple mutant mice, compared with infected wild-type mice.The combined signaling from the TNF or IL-1 receptors promotes maximal lung inflammation that may contribute to the severity of disease caused by H5N1 virus infection.

Keywords

Inflammation, Lung Diseases, Mice, Knockout, Influenza A Virus, H5N1 Subtype, Neutrophils, Macrophages, Brain, Receptors, Interleukin-1, Cell Count, Viral Load, Receptors, Tumor Necrosis Factor, Mice, Inbred C57BL, Mice, Orthomyxoviridae Infections, Mutation, Animals, Cytokines, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    86
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
86
Top 10%
Top 10%
Top 10%
bronze