Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2002 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Cation Chloride Cotransporters Interact with the Stress-related Kinases Ste20-related Proline-Alanine-rich Kinase (SPAK) and Oxidative Stress Response 1 (OSR1)

Authors: Kerstin, Piechotta; Jianming, Lu; Eric, Delpire;

Cation Chloride Cotransporters Interact with the Stress-related Kinases Ste20-related Proline-Alanine-rich Kinase (SPAK) and Oxidative Stress Response 1 (OSR1)

Abstract

Cells respond to stress stimuli by mounting specific responses. During osmotic and oxidative stress, cation chloride cotransporters, e.g. Na-K-2Cl and K-Cl cotransporters, are activated to maintain fluid/ion homeostasis. Here we report the interaction of the stress-related serine-threonine kinases Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress response 1 (OSR1) with the cotransporters KCC3, NKCC1, and NKCC2 but not KCC1 and KCC4. The interaction was identified using yeast two-hybrid assays and confirmed via glutathione S-transferase pull-down experiments. Evidence for in vivo interaction was established by co-immunoprecipitation of SPAK from mouse brain with anti-NKCC1 antibody. The interacting region of both kinases comprises the last 100 amino acids of the protein. The SPAK/OSR1 binding motif on the cotransporters consists of nine residues, starting with an (R/K)FX(V/I) sequence followed by five additional residues that are essential for binding but for which no consensus was found. Immunohistochemical analysis of choroid plexus epithelium revealed co-expression of NKCC1 and SPAK on the apical membrane. In contrast, in choroid plexus epithelium from NKCC1 null mice, SPAK immunostaining was found in the cytoplasm. We conclude that several cation chloride co-transporters interact with SPAK and/or OSR1, and we hypothesize that this interaction might play a role during the initiation of the cellular stress response.

Related Organizations
Keywords

Mice, Knockout, Binding Sites, Saccharomyces cerevisiae Proteins, Sequence Homology, Amino Acid, Sodium-Potassium-Chloride Symporters, Recombinant Fusion Proteins, Molecular Sequence Data, Intracellular Signaling Peptides and Proteins, Brain, Protein Serine-Threonine Kinases, MAP Kinase Kinase Kinases, Mice, Inbred C57BL, Mice, Oxidative Stress, Animals, Amino Acid Sequence, Sequence Alignment, DNA Primers, Gene Library, Glutathione Transferase

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    337
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
337
Top 1%
Top 1%
Top 10%
gold