Mutation and selection at silent and replacement sites in the evolution of animal mitochondrial DNA
pmid: 9720291
Mutation and selection at silent and replacement sites in the evolution of animal mitochondrial DNA
Two patterns are presented that illustrate the interaction of mutation and selection in the evolution of animal mtDNA: 1) variation among taxa in the ratio of polymorphism to divergence (rpd) at silent and replacement sites in protein-coding genes, and 2) strand-differences in polymorphism and divergence at 'silent' sites that suggest a mutation-selection balance in the evolution of codon usage. Cytochrome b data from GenBank show that about half of the species pairs tested have a significant excess of amino acid polymorphism, relative to divergence. The remaining half of species pairs do not depart from neutrality, but generally do show an excess of amino acid polymorphism. Sequences from Drosophila pseudoobscura displaying a signature of an expanding population show a slight, but non-significant, deficiency of amino acid polymorphism suggestive of recently intensified selection on mildly deleterious mutations. Genes whose reading frames lie on the major coding strand of Drosophila mtDNA show a preponderance of T- > C substitutions, while genes encoded on the minor strand experience more A- > G than T- > C substitutions between species at both silent and replacement sites. However, silent mutations at third codon positions are introduced into the population in proportions opposite to those observed as fixed differences between species (e.g., an excess of T- > C polymorphisms are found at the ND5 gene on the minor coding strand). The high A + T content of insect mtDNAs imposes strong codon usage bias favoring A-ending and T-ending codons resulting in a distinct mutation-selection balance for genes encoded on opposites strands. Thus, at both replacement and silent sites, mutations that appear to be constrained in terms of divergence between species are in excess within species. The data suggest that mildly deleterious mutations are common in mitochondrial genes. A test of this, and a competing, hypothesis is proposed that requires additional sequence surveys of polymorphism and divergence. An important challenge is to tease apart the impact of mutation and selection on levels of polymorphism versus divergence in a genome that does not generally recombine.
- Brown University United States
Reading Frames, Polymorphism, Genetic, Base Sequence, Models, Genetic, Genetic Variation, Cytochrome b Group, DNA, Mitochondrial, Polymerase Chain Reaction, Evolution, Molecular, Drosophila melanogaster, Vertebrates, Animals, Point Mutation, Drosophila, Selection, Genetic, Codon, Phylogeny, DNA Primers
Reading Frames, Polymorphism, Genetic, Base Sequence, Models, Genetic, Genetic Variation, Cytochrome b Group, DNA, Mitochondrial, Polymerase Chain Reaction, Evolution, Molecular, Drosophila melanogaster, Vertebrates, Animals, Point Mutation, Drosophila, Selection, Genetic, Codon, Phylogeny, DNA Primers
25 Research products, page 1 of 3
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).115 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
