Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cellular Signallingarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cellular Signalling
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

DAB2IP regulates intratumoral testosterone synthesis and CRPC tumor growth by ETS1/AKR1C3 signaling

Authors: Yanan, Gu; Shiqi, Wu; Yue, Chong; Bing, Guan; Lei, Li; Dalin, He; Xinyang, Wang; +2 Authors

DAB2IP regulates intratumoral testosterone synthesis and CRPC tumor growth by ETS1/AKR1C3 signaling

Abstract

The intratumoral androgen synthesis is one of the mechanisms by which androgen receptor (AR) is aberrantly re-activated in castration-resistant prostate cancer (CRPC) after androgen ablation. However, pathways controlling steroidogenic enzyme expression and de novo androgen synthesis in prostate cancer (PCa) cells are largely unknown. In this study, we explored the potential roles of DAB2IP in testosterone synthesis and CRPC tumor growth. Indeed, DAB2IP loss could maintain AR transcriptional activity, PSA re-expression and tumor growth under castrated condition in vitro and in vivo, and reprogram the expression profiles of steroidogenic enzymes, including AKR1C3. Mechanistically, DAB2IP could dramatically inhibit the AKR1C3 promoter activity and the conversion from androgen precursors (i.e., DHEA) to testosterone through PI3K/AKT/mTOR/ETS1 signaling. Consistently, there was a high co-expression of ETS1 and AKR1C3 in PCa tissues and xenografts, and their expression in prostate tissues could also restore AR nuclear staining in castrated DAB2IP-/- mice after DHEA supplement. Together, this study reveals a novel regulation of intratumoral de novo androgen synthesis in CRPC, and provides the DAB2IP/ETS1/AKR1C3 signaling as a potential therapeutic target.

Related Organizations
Keywords

Male, Aldo-Keto Reductase Family 1 Member C3, Dehydroepiandrosterone, Proto-Oncogene Protein c-ets-1, Mice, Phosphatidylinositol 3-Kinases, Prostatic Neoplasms, Castration-Resistant, Receptors, Androgen, ras GTPase-Activating Proteins, Cell Line, Tumor, Androgens, Animals, Humans, Testosterone, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%