Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chromosomaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chromosoma
Article . 1990 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Chromosoma
Article . 1990
versions View all 2 versions

DNA sequence comparison of micropia transposable elements fromDrosophila hydei andDrosophila melanogaster

Authors: D H, Lankenau; P, Huijser; E, Jansen; K, Miedema; W, Hennig;

DNA sequence comparison of micropia transposable elements fromDrosophila hydei andDrosophila melanogaster

Abstract

Members of the retrotransposon family micropia were discovered as constituents of wild-type Y chromosomal fertility genes from Drosophila hydei. Several members of the micropia family have subsequently been recovered from Drosophila melanogaster and four micropia elements, micropia-DhMiF2, -DhMiF8, -Dm11 and -Dm2, two each from D. hydei and D. melanogaster, have been totally sequenced (17 kb of micropia sequences and 6.8 kb from insertions). Comparative analysis of micropia sequences revealed a complex pattern of divergence within a single Drosophila genome. The divergence includes deletions, possibly by a slipped mispairing mechanism, insertions of a retroposon, and of another retrotransposon (copia) and "positional nucleotide shuffling" within the tandem repeats of the 3' non-protein-coding region of micropia elements. A 10 bp long sequence of each repeat unit of the 3' tandem repeats of micropia elements is highly conserved and is therefore a candidate of functional importance either in transposition events or in regulatory activity on flanking DNA sequences.

Related Organizations
Keywords

Drosophila melanogaster, Base Sequence, Sequence Homology, Nucleic Acid, Molecular Sequence Data, DNA Transposable Elements, Animals, Drosophila, Repetitive Sequences, Nucleic Acid

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Average
Top 10%
Average