Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ figsharearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
figshare
Other literature type . 2017
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
figshare
Other literature type . 2017
License: CC BY
Data sources: Datacite
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2017
Data sources: IRIS Cnr
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Polymeric Materials
Article . 2017 . Peer-reviewed
Data sources: Crossref
versions View all 6 versions

Ultrasmall silver nanoparticles loaded in alginate–hyaluronic acid hybrid hydrogels for treating infected wounds

Authors: CATANZANO, OVIDIO; D'ESPOSITO, VITTORIA; Pulcrano, G; MAIOLINO, SARA; AMBROSIO, MARIA ROSARIA; Esposito, M; MIRO, AGNESE; +4 Authors

Ultrasmall silver nanoparticles loaded in alginate–hyaluronic acid hybrid hydrogels for treating infected wounds

Abstract

Nowadays, silver nanoparticles are in the limelight to control infection during wound healing process, and a vast variety of antimicrobial dressings based on colloidal silver have been marketed to fight wound invasion of pathogen bacteria, which represents one of the main adverse effects limiting the repair process. Here we propose a biofunctional hydrogel based on alginate (ALG) and hyaluronic acid (HA) embedding ultrasmall silver nanoparticles (usSN, <1 nm) as antimicrobial component. The hydrogels were fabricated in different size by a straightforward internal gelation method using CaCO3 and glucono-δ-lactone. To follow usSN release from the hydrogels in aqueous media, catalytic activity of usSN-loaded hydrogels was evaluated. Results suggested that catalytic activity was low in intact hydrogels and high when hydrogels dissolved, which suggests that usSN firmly interact with polymer chains and are available in the medium depending on the extent of hydrogel degradation. HA-containing hydrogels showed faster dissolution in simulated physiological conditions and higher antibiofouling properties as compared to hydrogels made only of ALG. Free usSN were not toxic toward human mesenchymal stem cells (Ad-MSCs), previously isolated from subcutaneous adipose tissue biopsies, up to 50 µg/mL. At this concentration, viability of Ad-MSCs was unaffected whereas their motility was significantly higher as compared to control (p<0.01) for both free usSN and hydrogel integrating. Antimicrobial activity on clinical isolates of both Gram-positive and Gram-negative bacteria demonstrated that usSN at 50 µg/mL were able to kill all the bacteria tested after 24 and 48 h of contact time. In the case of hydrogels, a matrix effect was found and bacterial killing was significant only at 24 h and dependent on bacterial strain, being Gram-negative bacteria more susceptible. These results clearly indicate that usSN interaction with polymer network and exposure time can strongly affect usSN antimicrobial profile in the hydrogel and, in turn, timing of hydrogel change at injured site in a clinical setting. On the whole, ALG/HA hydrogels integrating usSN can be considered a suitable option to fabricate biofunctional dressings for hospitalized patients and worth of further in vivo investigation.

Keywords

silver nanoparticles, antimicrobial activity, Alginate, hyaluronic acid, wound healing, hydrogel, Alginate antimicrobial activity hyaluronic acid hydrogel silver nanoparticles wound healing

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 10%
Green