Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The EMBO Journalarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The EMBO Journal
Article . 1990 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
The EMBO Journal
Article . 1990
versions View all 2 versions

An abundant and ubiquitous homo-oligomeric ring-shaped ATPase particle related to the putative vesicle fusion proteins Sec18p and NSF.

Authors: J M, Peters; M J, Walsh; W W, Franke;

An abundant and ubiquitous homo-oligomeric ring-shaped ATPase particle related to the putative vesicle fusion proteins Sec18p and NSF.

Abstract

We have discovered a ring-shaped particle of 12.5 nm diameter, 14.5S and apparent molecular weight of approximately 570,000 that displays 6-fold radial symmetry and is composed of a single kind of an acidic (pI approximately 5.5) polypeptide of Mr 97,000 (p97). Using antibodies to this protein we have detected its occurrence in a wide range of cells and tissues of diverse species from frog to man, including highly specialized cells such as mammalian erythrocytes and spermatozoa. In Xenopus laevis oocytes, the particle is found in both isolated nuclei and in manually enucleated ooplasms, which corresponds to immunofluorescence staining dispersed over both nucleoplasm and cytoplasm. The particle has a N-ethylmaleimide (NEM)-inhibitable Mg2(+)-ATPase activity, and its amino acid sequence, as deduced from cDNA clones, displays considerable homology to the mammalian NEM-sensitive fusion protein (NSF) and yeast Sec18p believed to be essential for vesicle fusion in secretory processes, indicating that these three proteins belong to the same multigene family.

Keywords

Adenosine Triphosphatases, Male, Saccharomyces cerevisiae Proteins, Base Sequence, Protein Conformation, Molecular Sequence Data, DNA, Epithelium, Fungal Proteins, Molecular Weight, Microscopy, Fluorescence, Organ Specificity, Animals, Humans, Female, Amino Acid Sequence, Cloning, Molecular, Carrier Proteins, N-Ethylmaleimide-Sensitive Proteins, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    279
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
279
Top 10%
Top 1%
Top 10%