Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 2005
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 2005 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 5 versions

Altered primordial germ cell migration in the absence of transforming growth factor β signaling via ALK5

Authors: Jonas Larsson; M. Azim Surani; Christine L. Mummery; Bart J. L. Eggen; Susana M. Chuva de Sousa Lopes; Sander van den Driesche; Rita L. C. Carvalho;

Altered primordial germ cell migration in the absence of transforming growth factor β signaling via ALK5

Abstract

Transforming growth factor beta (TGFbeta) inhibits proliferation and promotes the migration of primordial germ cells (PGCs) towards explants of gonadal ridges in vitro. However, its effects in vivo are still unclear. Here, we analyzed the behavior of PGCs in embryos lacking TGFbeta signaling via the type I receptor ALK5. TGFbeta in vivo was neither a chemoattractant for PGCs, nor did it affect their proliferation during migration towards the gonadal ridges up to embryonic day (E)10. Unexpectedly, the absence of TGFbeta signaling in fact resulted in significant facilitation of PGC migration out of the hindgut, due to the reduced deposition of collagen type I surrounding the gut of Alk5-deficient mutant embryos. Migratory PGCs adhere strongly to collagen; therefore, reduced collagen type I along the gut may result in reduced adhesion, facilitating migration into the dorsal mesenterium and gonadal ridges. Our results provide new evidence for the role of TGFbeta signaling in migration of PGCs in vivo distinct from that described previously.

Keywords

Blotting, Western, Receptor, Transforming Growth Factor-beta Type I, Embryonic Development, Fluorescent Antibody Technique, Protein Serine-Threonine Kinases, Mouse embryo, Collagen Type I, TGFβ, Mice, Cell Movement, Transforming Growth Factor beta, Cell Adhesion, Animals, Primordial germ cells, Hindgut, Molecular Biology, Migration, DNA Primers, Reverse Transcriptase Polymerase Chain Reaction, Cell Biology, Immunohistochemistry, Germ Cells, Collagen, Activin Receptors, Type I, Receptors, Transforming Growth Factor beta, Developmental Biology, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    55
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
55
Top 10%
Top 10%
Top 10%
hybrid