Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2013 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Essential Role for Vacuolar Acidification in Candida albicans Virulence

Authors: Cassandra, Patenaude; Yongqiang, Zhang; Brendan, Cormack; Julia, Köhler; Rajini, Rao;

Essential Role for Vacuolar Acidification in Candida albicans Virulence

Abstract

Fungal infections are on the rise, with mortality above 30% in patients with septic Candida infections. Mutants lacking V-ATPase activity are avirulent and fail to acidify endomembrane compartments, exhibiting pleiotropic defects in secretory, endosomal, and vacuolar pathways. However, the individual contribution of organellar acidification to virulence and its associated traits is not known. To dissect their separate roles in Candida albicans pathogenicity we generated knock-out strains for the V0 subunit a genes VPH1 and STV1, which target the vacuole and secretory pathway, respectively. While the two subunits were redundant in many vma phenotypes, such as alkaline pH sensitivity, calcium homeostasis, respiratory defects, and cell wall integrity, we observed a unique contribution of VPH1. Specifically, vph1Δ was defective in acidification of the vacuole and its dependent functions, such as metal ion sequestration as evidenced by hypersensitivity to Zn(2+) toxicity, whereas stv1Δ resembled wild type. In growth conditions that elicit morphogenic switching, vph1Δ was defective in forming hyphae whereas stv1Δ was normal or only modestly impaired. Host cell interactions were evaluated in vitro using the Caco-2 model of intestinal epithelial cells, and murine macrophages. Like wild type, stv1Δ was able to inflict cellular damage in Caco-2 and macrophage cells, as assayed by LDH release, and escape by filamentation. In contrast, vph1Δ resembled a vma7Δ mutant, with significant attenuation in host cell damage. Finally, we show that VPH1 is required for fungal virulence in a murine model of systemic infection. Our results suggest that vacuolar acidification has an essential function in the ability of C. albicans to form hyphae and establish infection.

Related Organizations
Keywords

Mice, Inbred BALB C, Vacuolar Proton-Translocating ATPases, Virulence Factors, Macrophages, Candidiasis, Hydrogen-Ion Concentration, Fungal Proteins, Disease Models, Animal, Mice, Gene Knockdown Techniques, Candida albicans, Vacuoles, Animals, Humans, Female, Caco-2 Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%
gold