Pooled-parent exome sequencing to prioritise de novo variants in genetic disease
doi: 10.1101/601740
Pooled-parent exome sequencing to prioritise de novo variants in genetic disease
AbstractIn the clinical setting, exome sequencing has become standard-of-care in diagnosing rare genetic disorders, however many patients remain unsolved. Trio sequencing has been demonstrated to produce a higher diagnostic yield than singleton (proband-only) sequencing. Parental sequencing is especially useful when a disease is suspected to be caused by a de novo variant in the proband, because parental data provide a strong filter for the majority of variants that are shared by the proband and their parents. However the additional cost of sequencing the parents makes the trio strategy uneconomical for many clinical situations. With two thirds of the sequencing budget being spent on parents, these are funds that could be used to sequence more probands. For this reason many clinics are reluctant to sequence parents.Here we propose a pooled-parent strategy for exome sequencing of individuals with likely de novo disease. In this strategy, DNA from all the parents of a cohort of unrelated probands is pooled together into a single exome capture and sequencing run. Variants called in the proband can then be filtered if they are also found in the parent pool, resulting in a shorter list of prioritised variants. To evaluate the pooled-parent strategy we performed a series of simulations by combining reads from individual exomes to imitate sample pooling. We assessed the recall and false positive rate and investigated the trade-off between pool size and recall rate. We compared the performance of GATK HaplotypeCaller individual and joint calling, and FreeBayes to genotype pooled samples. Finally, we applied a pooled-parent strategy to a set of real unsolved cases and showed that the parent pool is a powerful filter that is complementary to other commonly used variant filters such as population variant frequencies.
- Murdoch Children's Research Institute Australia
- Melbourne Genomics Health Alliance Australia
- Royal Children's Hospital Australia
- University of Melbourne Australia
3 Research products, page 1 of 1
- IsRelatedTo
- IsRelatedTo
- IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
