Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Current Opinion in P...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Opinion in Plant Biology
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Epigenetic regulation of flowering

Authors: Elizabeth S. Dennis; William James Peacock;
Abstract

The acceleration of flowering by prolonged low temperature treatment (vernalization) has unique properties including the floral transition occurring at a time separate from the vernalization treatment. This implies the vernalization condition is inherited through mitotic divisions, but this vernalized state is not inherited from one generation to the next. FLC, the key gene mediating this response in the Arabidopsis is repressed by histone modifications involving the VRN2 protein complex. Other protein complexes participate in activating the gene. While many plant species depend on vernalization for optimising flowering time, the genes involved differ between dicot and monocot plants in both Arabidopsis and cereals, vernalization regulates photoperiod control of flowering by preventing the induction of the floral promoter FT by long days in autumn but allowing induction of FT in spring and hence flowering occurs at an optimal time in the annual life cycle.

Keywords

Arabidopsis Proteins, Arabidopsis, MADS Domain Proteins, Flowers, Epigenesis, Genetic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    154
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
154
Top 10%
Top 10%
Top 1%