Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular and Cellul...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Neuroscience
Article . 1996 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

The Sensory Innervation of the Mouse Spinal Cord May Be Patterned by Differential Expression of and Differential Responsiveness to Semaphorins

Authors: A W, Püschel; R H, Adams; H, Betz;

The Sensory Innervation of the Mouse Spinal Cord May Be Patterned by Differential Expression of and Differential Responsiveness to Semaphorins

Abstract

To better understand the regulatory processes underlying axonal pathfinding we analyzed the embryonic expression of seven murine semaphorin genes by in situ hybridization In the spinal cord, transcripts of all seven semaphorin genes were detected from Embryonic Day 11.5 (E11.5) onward and restricted to distinct regions at E15.5. Interestingly, semE, F, and G mRNAs were in addition differentially expressed in the ventricular zone of the telencephalon. In order to correlate these expression patterns to the behavior of different types of sensory afferents, we tested their response to recombinant semaphorin proteins. Specific subpopulations of dorsal root ganglion sensory neurons displayed a developmentally regulated differential response to Sem D. Whereas extension of both NGF- and NT-3-dependent neurites was inhibited by Sem D at E12.5, only neurites formed in the presence of NGF responded at E14.5. This suggests that Sem D may be involved in preventing an early penetration of the spinal cord by sensory afferents and subsequently shaping their lamina-specific termination.

Keywords

Brain Chemistry, Stem Cells, Down-Regulation, Gene Expression Regulation, Developmental, Mice, Inbred Strains, Semaphorin-3A, Mice, Neurotrophin 3, Spinal Cord, Ganglia, Spinal, Animals, Nerve Growth Factors, Neurons, Afferent, RNA, Messenger, Schwann Cells, Cells, Cultured, In Situ Hybridization, Glycoproteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    153
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
153
Top 10%
Top 1%
Top 1%