Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Geneticsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Genetics
Article . 2005 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature Genetics
Article . 2005
versions View all 2 versions

Monoallelic yet combinatorial expression of variable exons of the protocadherin-α gene cluster in single neurons

Authors: Shigeyuki, Esumi; Naoki, Kakazu; Yusuke, Taguchi; Teruyoshi, Hirayama; Ayako, Sasaki; Takahiro, Hirabayashi; Tsuyoshi, Koide; +3 Authors

Monoallelic yet combinatorial expression of variable exons of the protocadherin-α gene cluster in single neurons

Abstract

Diverse protocadherin-alpha genes (Pcdha, also called cadherin-related neuronal receptor or CNR) are expressed in the vertebrate brain. Their genomic organization involves multiple variable exons and a set of constant exons, similar to the immunoglobulin (Ig) and T-cell receptor (TCR) genes. This diversity can be used to distinguish neurons. Using polymorphisms that distinguish the C57BL/6 and MSM mouse strains, we analyzed the allelic expression of the Pcdha gene cluster in individual neurons. Single-cell analysis of Purkinje cells using multiple RT-PCR reactions showed the monoallelic and combinatorial expression of each variable exon in the Pcdha genes. This report is the first description to our knowledge of the allelic expression of a diversified receptor family in the central nervous system. The allelic and combinatorial expression of distinct variable exons of the Pcdha genes is a potential mechanism for specifying neuron identity in the brain.

Keywords

Neurons, Models, Genetic, Reverse Transcriptase Polymerase Chain Reaction, Molecular Sequence Data, Gene Expression, Genetic Variation, Mice, Inbred Strains, Exons, Cadherins, Mice, Inbred C57BL, Mice, Purkinje Cells, Multigene Family, Animals

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    249
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
249
Top 1%
Top 1%
Top 1%