Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Genes Brain & Behavi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Genes Brain & Behavior
Article . 2013 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Genome‐wide association mapping of natural variation in odour‐guided behaviour in Drosophila

Authors: Anil G. Jegga; Anil G. Jegga; J. E. Layne; Elizabeth B Brown; Cheng Zhu; Cheng Zhu; S. M. Rollmann;

Genome‐wide association mapping of natural variation in odour‐guided behaviour in Drosophila

Abstract

A defining goal in the field of behavioural genetics is to identify the key genes or genetic networks that shape behaviour. A corollary to this goal is the goal of identifying genetic variants that are responsible for variation in the behaviour. These goals are achieved by measuring behavioural responses to controlled stimuli, in the present case the responses of Drosophila melanogaster to olfactory stimuli. We used a high‐throughput behavioural assay system to test a panel of 157 Drosophila inbred lines derived from a natural population for both temporal and spatial dynamics of odour‐guided behaviour. We observed significant variation in response to the odourant 2,3‐butanedione, a volatile compound present in fermenting fruit. The recent whole genome sequencing of these inbred lines allowed us to then perform genome‐wide association analyses in order to identify genetic polymorphisms underlying variation in responses. These analyses revealed numerous single nucleotide polymorphisms associated with variation in responses. Among the candidate genes identified were both novel and previously identified olfaction‐related genes. Further, gene network analyses suggest that genes influencing variation in odour‐guided behaviour are enriched for functions involving neural processing and that these genes form a pleiotropic interaction network. We examined several of these candidate genes that were highly connected in the protein‐ and genetic interaction networks using RNA interference. Our results showed that subtle changes influencing nervous system function can result in marked differences in behaviour.

Related Organizations
Keywords

Smell, Drosophila melanogaster, Animals, Gene Regulatory Networks, Genes, Insect, Genetic Pleiotropy, Diacetyl, Motor Activity, Polymorphism, Single Nucleotide, Genome-Wide Association Study

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Average
Top 10%