Powered by OpenAIRE graph

Abstract MP12: The Mef2c Transcription Factor Regulates The Renin Cell Identity

Authors: Maria Luisa S. Sequeira Lopez; Omar Guessoum; Nathan Sheffield; R. A. Gomez; Kristyna Kupkova;

Abstract MP12: The Mef2c Transcription Factor Regulates The Renin Cell Identity

Abstract

Introduction: The Renin-Angiotensin-System is essential to maintain blood pressure and fluid electrolyte homeostasis. Because precise regulation of expression and release of renin is critical for survival, understanding the molecular regulation of the renin cell identity is a vital area of study. Advances in epigenetics have enabled finer dissection of chromatin factors which maintain the identity of the renin cell. By studying genes with heightened accessibility profiles that are unique to the JG cell, we now have the capacity to unravel the determinants of the renin cell identity. Hypothesis: That transcription factors central to the governance of renin cell identity can be identified through the Assay for Transposase Accessible Chromatin (ATAC-seq) differential accessibility analysis. Methods: Native renin cell ATAC-seq was compared to existing ENCODE ATAC-seq datasets from 40 other cell types to define regions/peaks which characterize the JG program. Peaks with high intensity and ≥2-fold increase in signal were selected for Motif analysis to search for transcription factors (TFs) whose consensus sequence is enriched in those regions. Identified TFs were then selected for validation by in-situ hybridization and conditional deletion in renin cells. Results: 1) The Mef2c transcription factor was identified as having a consensus sequence in regulatory regions unique to the JG cell. It has clear expression in RNA-seq of renin cells (65 transcripts per million, n=3) and a predicted binding site in the renin gene. These results were validated by in-situ hybridization where signal localized at the JG area was detected in concordance with our in-silico results. 2) We generated Mef2c conditional knockout animals using our Ren1d-Cre mouse to study the effect in renin expression and identity. These mice displayed reduced renin immunostaining at the JG area and a 40% reduction in renin mRNA expression by qPCR from kidney cortices relative to wild-type (n=2, preliminary data). Conclusions: Our studies identified Mef2c as a TF target which likely has an essential role in maintaining and preserving renin cell identity. Experiments involving transcriptomics and epigenomics are ongoing to understand the changes wrought by Mef2c deletion in renin cells.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average