Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2003 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

GIPC Binds to the Human Lutropin Receptor (hLHR) through an Unusual PDZ Domain Binding Motif, and It Regulates the Sorting of the Internalized Human Choriogonadotropin and the Density of Cell Surface hLHR

Authors: Takashi, Hirakawa; Colette, Galet; Mikiko, Kishi; Mario, Ascoli;

GIPC Binds to the Human Lutropin Receptor (hLHR) through an Unusual PDZ Domain Binding Motif, and It Regulates the Sorting of the Internalized Human Choriogonadotropin and the Density of Cell Surface hLHR

Abstract

By using a yeast two-hybrid screen we identified GIPC (GAIP-interacting protein C terminus), a protein with a type I PDZ domain as a novel human lutropin receptor (hLHR) binding partner. Pull-down and immunoprecipitation assays confirmed this interaction and showed that it is dependent on the PDZ domain of GIPC and the C-terminal tetrapeptide of the hLHR. To characterize the functional consequences of the GIPC-hLHR interaction, we used a small interfering RNA against GIPC to generate a clonal cell line that is deficient in GIPC. Studies with this cell line reveal that GIPC is partially responsible for the recycling of the hormone that is internalized by the hLHR and also for maintaining a relatively constant level of hLHR at the cell surface during hormone internalization.

Related Organizations
Keywords

Sequence Homology, Amino Acid, Amino Acid Motifs, Cell Membrane, Molecular Sequence Data, Neuropeptides, Receptors, LH, Chorionic Gonadotropin, Endocytosis, Two-Hybrid System Techniques, Humans, Amino Acid Sequence, Carrier Proteins, Adaptor Proteins, Signal Transducing, DNA Primers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    75
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
75
Top 10%
Top 10%
Top 10%
gold