Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cancer Lettersarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cancer Letters
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Silencing JARID1B suppresses oncogenicity, stemness and increases radiation sensitivity in human oral carcinoma

Authors: Chun-Shu Lin; Ying-Chin Lin; Bamodu Oluwaseun Adebayo; Alexander Wu; Jia-Hong Chen; Yi-Jen Peng; Ming-Fang Cheng; +4 Authors

Silencing JARID1B suppresses oncogenicity, stemness and increases radiation sensitivity in human oral carcinoma

Abstract

Oral squamous cell carcinoma (OSCC) is a major cause of human mortality globally and radiotherapy is one of the main treatment modalities, however its therapeutic effect is often limited by radioresistance. JARID1B is an epigenetic factor with reported oncogenic potential in various cancer types. We investigated the effect of JARID1B inhibition on migration and invasion of human OSCC cell lines, as well as on clinical patients' outcome.Wound healing, matrigel invasion, Sulforhodamine B, and spheroid formation assays were used to characterize the signaling pathways of shJARID1B in response to radiation treatment. We evaluated the prognostic relevance of Jarid1b expression in a cohort of 81 OSCC patients.Human OSCC cell lines, including SAS, HSC3, Cal27, TW2.6 and SCC4 cells, were used. shJARID1B cells significantly inhibited migration and invasion ability compared to their vector or wild type counterparts. Silencing shJARID1B significantly inhibited oral cancer stem cell activity and potentiated the tumor-inhibitory activity of radiation therapy in OSCC. Radiotherapy coupled with shJARID1B knockdown reduced mRNA levels of NQO1, KEAP1, NRF2, FOXO1, FOXO3, KLF4, OCT4, CD133, and Nanog in malignant OSCC cells. OSCC spheroid formation ability was markedly reduced in the shJARID1B cells. JARID1B overexpression is a dependent prognostic factor in OSCC patients.Silencing shJARID1B inhibits migration and invasion of human OSCC, reduces cancer stem cell activities and potentiates tumor-inhibiting radiotherapeutic effects. JARID1B knockdown prior to radiotherapy is a potential effective therapeutic strategy for the treatment of OSCC.

Keywords

Adult, Aged, 80 and over, Male, Jumonji Domain-Containing Histone Demethylases, Dose-Response Relationship, Radiation, Middle Aged, Gene Expression Regulation, Enzymologic, Gene Expression Regulation, Neoplastic, Kruppel-Like Factor 4, Cell Movement, Head and Neck Neoplasms, Cell Line, Tumor, Biomarkers, Tumor, Carcinoma, Squamous Cell, Humans, Female, Mouth Neoplasms, Neoplasm Invasiveness, Aged, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    55
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
55
Top 10%
Top 10%
Top 10%