Plant O-methyltransferases: molecular analysis, common signature and classification
pmid: 9484457
Plant O-methyltransferases: molecular analysis, common signature and classification
Comparative analysis of the predicted amino acid sequences of a number of plant O-methyltransferase cDNA clones show that they share some 32-71% sequence identity, and can be grouped according to the different compounds they utilise as substrates. Five highly conserved regions are proposed as a signature for plant O-methyltransferases, two of which (regions I and IV) are believed to be involved in S-adenosyl-L-methionine and metal binding, respectively. The glycine-rich signature regions include a 36 amino acid domain which is located in the mid-terminal section of the carboxy terminus of most O-methyltransferase sequences. Cladistic analysis of the amino acid sequences suggests that plant O-methyltransferases may have arisen from common ancestral genes that were driven by different structural and/or functional requirements, and whose descendants segregated into different biochemical species. A comprehensive classification of plant O-methyltransferases is proposed following the guidelines of the Commission of Plant Gene Nomenclature.
- University of Montreal Canada
- Concordia University Canada
DNA, Complementary, Amino Acid Sequence, Methyltransferases, Plants, Sequence Alignment, Conserved Sequence, Phylogeny
DNA, Complementary, Amino Acid Sequence, Methyltransferases, Plants, Sequence Alignment, Conserved Sequence, Phylogeny
32 Research products, page 1 of 4
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).237 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
