Single-Cell RNA-Seq Technologies and Related Computational Data Analysis
Single-Cell RNA-Seq Technologies and Related Computational Data Analysis
Single-cell RNA sequencing (scRNA-seq) technologies allow the dissection of gene expression at single-cell resolution, which greatly revolutionizes transcriptomic studies. A number of scRNA-seq protocols have been developed, and these methods possess their unique features with distinct advantages and disadvantages. Due to technical limitations and biological factors, scRNA-seq data are noisier and more complex than bulk RNA-seq data. The high variability of scRNA-seq data raises computational challenges in data analysis. Although an increasing number of bioinformatics methods are proposed for analyzing and interpreting scRNA-seq data, novel algorithms are required to ensure the accuracy and reproducibility of results. In this review, we provide an overview of currently available single-cell isolation protocols and scRNA-seq technologies, and discuss the methods for diverse scRNA-seq data analyses including quality control, read mapping, gene expression quantification, batch effect correction, normalization, imputation, dimensionality reduction, feature selection, cell clustering, trajectory inference, differential expression calling, alternative splicing, allelic expression, and gene regulatory network reconstruction. Further, we outline the prospective development and applications of scRNA-seq technologies.
- Imperial College London United Kingdom
- United States Food and Drug Administration United States
- National Center for Toxicological Research United States
- East China Normal University China (People's Republic of)
cell clustering, alternative splicing, single-cell RNA-seq, allelic expression, Genetics, QH426-470, cell trajectory
cell clustering, alternative splicing, single-cell RNA-seq, allelic expression, Genetics, QH426-470, cell trajectory
23 Research products, page 1 of 3
- IsRelatedTo
- IsRelatedTo
- IsRelatedTo
- IsRelatedTo
- IsRelatedTo
- IsRelatedTo
- IsRelatedTo
- IsRelatedTo
- IsRelatedTo
- IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).759 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 0.1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.01%
