Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Breast Cancer Resear...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Breast Cancer Research and Treatment
Article . 2010 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions

Amplification of ESR1 may predict resistance to adjuvant tamoxifen in postmenopausal patients with hormone receptor positive breast cancer

Authors: Nielsen, Kirsten Vang; Ejlertsen, Bent; Müller, Sven; Møller, Susanne; Rasmussen, Birgitte B; Balslev, Eva; Lænkholm, Anne-Vibeke; +2 Authors

Amplification of ESR1 may predict resistance to adjuvant tamoxifen in postmenopausal patients with hormone receptor positive breast cancer

Abstract

The estrogen receptor (ER) is the target of tamoxifen, but endocrine therapies do not benefit all patients with ER positive tumors. We therefore hypothesized that copy number changes in the ESR1 gene, encoding ER, confer resistance. Within a consecutive series of ER positive, postmenopausal patients allocated to 5 years tamoxifen, we identified 61 patients with recurrence less than 4 years and 48 patients without recurrence at least 7 years after initiation of adjuvant tamoxifen. Archival tissue containing primary tumor was collected from 97 patients (89%). Tumor samples were analyzed for ESR1 copy number changes using FISH with a probe covering the ESR1 gene at 6q25 and a reference probe covering the centromere of chromosome 6. The assay was validated in a material of 120 normal breast samples. FISH analysis for ESR1 was successful in 91 patients (94%). Amplification (ratio ESR1/CEN-6 ≥ 2.0) was observed in 11 of 50 (22%) patients with early recurrence, compared to two of 41 (5%) patients without recurrence. The difference is statistically significant (P = 0.033). In both groups, two patients with ESR1 deletion (ratio ESR1/CEN-6 < 0.8) were identified. ESR1 amplification was significantly associated with poor disease-free survival (P = 0.0054) and overall survival (P = 0.0004). This pilot study supports our hypothesis that ESR1 amplification is associated with a poorer outcome following adjuvant treatment with tamoxifen in ER positive early breast cancer. This study also revealed the existence of ESR1 deletions. The prognostic and predictive impact of ESR1 copy number changes needs further exploration in clinical trials.

Keywords

Antineoplastic Agents, Hormonal, Drug Resistance, Antineoplastic Agents, Breast Neoplasms, Pilot Projects, Breast Neoplasms/drug therapy, Gene Order, Chemotherapy, Humans, Hormonal/therapeutic use, Adjuvant, Aged, Neoplasm/genetics, Estrogen Receptor alpha/genetics, Estrogen Receptor alpha, Gene Amplification, Middle Aged, Prognosis, Gene Amplification/genetics, Survival Analysis, Postmenopause, Tamoxifen, Tamoxifen/therapeutic use, Chemotherapy, Adjuvant, Drug Resistance, Neoplasm, Female, Gene Deletion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    55
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
55
Top 10%
Top 10%
Top 10%
bronze