Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The FASEB Journalarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The FASEB Journal
Article . 2007 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

CCR5 signaling through phospholipase D involves p44/42 MAP‐kinases and promotes HIV‐1 LTR‐directed gene expression

Authors: Concepción Marañón; Concepción Marañón; Mylène Heinis; Mylène Heinis; Axel Périanin; Axel Périanin; Julie Lemay; +7 Authors

CCR5 signaling through phospholipase D involves p44/42 MAP‐kinases and promotes HIV‐1 LTR‐directed gene expression

Abstract

The chemokine receptor CCR5 plays an important role as an entry gate for the human immunodeficiency virus-1 (HIV-1) and for viral postentry events. Among signal transducers used by chemoattractant receptors, the phosphatidylcholine-specific phospholipase D (PLD) produces large amounts of second messengers in most cell types. However, the relevance of PLD isoforms to CCR5 signaling and HIV-1 infection process remains unexplored. We show here that CCR5 activation by MIP-1beta in HeLa-MAGI cells triggered a rapid and substantial PLD activity, as assessed by mass choline production. This activity required the activation of ERK1/2-MAP kinases and involved both PLD1 and PLD2. MIP-1beta also promoted the activation of an HIV-1 long terminal repeat (LTR) by the transactivator Tat in HeLa P4.2 cells through a process involving ERK1/2. Expression of wild-type and catalytically inactive PLDs dramatically boosted and inhibited the LTR activation, respectively, without altering Tat expression. Wild-type and inactive PLDs also respectively potentiated and inhibited HIV-1(BAL) replication in MAGI cells. Finally, in monocytic THP-1 cells, antisense oligonucleotides to both PLDs dramatically inhibited the HIV-1 replication. Thus, PLD is activated downstream of ERK1/2 upon CCR5 activation and plays a major role in promoting HIV-1 LTR transactivation and virus replication, which may open novel perspectives to anti-HIV-1 strategies.

Keywords

Gene Expression Regulation, Viral, Mitogen-Activated Protein Kinase 1, Transcriptional Activation, Mitogen-Activated Protein Kinase 3, Receptors, CCR5, MAP Kinase Signaling System, Virus Replication, Choline, HIV-1, Phospholipase D, Humans, HIV Long Terminal Repeat, HeLa Cells, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Average
Average
Average