Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biophysical Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biophysical Journal
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biophysical Journal
Article . 2009
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biophysical Journal
Article . 2009 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 3 versions

Regulation Of BK Channels By FK506 Binding Protein 12.6 In Vascular Smooth Muscle Cells

Authors: Zheng, Yun-Min; Niu, Chun-Feng; Wang, Yong-Xiao;

Regulation Of BK Channels By FK506 Binding Protein 12.6 In Vascular Smooth Muscle Cells

Abstract

Big-conductance, calcium-activated potassium (BK) channels are important for numerous physiological responses, including relaxation of vascular smooth muscle cells (SMCs). The activity of BK channels can be regulated by several signaling molecules. Here we provide biochemical evidence showing that FK506 binding protein 12.6 (FKBP12.6), an endogenous molecule known to regulate ryanodine receptors/calcium release channels, is physically associated with the BK channel α subunits in mouse cerebral arteries. Inside-out single channels recordings show that application of FK506 to remove FKBP12.6 significantly decreases the open probability of BK channels in freshly isolated mouse cerebral artery SMCs. The effect of FK506 is concentration-dependent. Similar to chemical removal of FKBP12.6 with FK506 exposure, genetic removal of FKBP12.6 with gene deletion produces an inhibitory effect on the activity of single BK channels as well. FKBP12.6 gene deletion also reduces the sensitivity of BK channels to voltage and calcium. Consistent with these results, agonist-evoked vasoconstriction is augmented in isolated arteries from FKBP2.6 gene deletion mice. Moreover, blood pressure is higher in FKBP12.6 gene deletion mice than control mice. In conclusion, our findings for the first time demonstrate that FKBP12.6 is associated with BK channels and regulates the channel functions, which may play an important role in controlling vascular tone and blood pressure.

Related Organizations
Keywords

Biophysics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
hybrid