Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cellular ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cellular Physiology
Article . 2007 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL-Rennes 1
Article . 2007
Data sources: HAL-Rennes 1
versions View all 3 versions

MEK/ERK‐dependent uPAR expression is required for motility via phosphorylation of P70S6K in human hepatocarcinoma cells

Authors: Anne Bessard; Christophe Frémin; Alexandre Coutant; Georges Baffet; Georges Baffet; Frédéric Ezan;

MEK/ERK‐dependent uPAR expression is required for motility via phosphorylation of P70S6K in human hepatocarcinoma cells

Abstract

AbstractMotility and invasiveness events require specific intracellular signaling cascade activations. In cancer liver cells, one of these mechanisms could involve the MAPK MEK/ERK cascade activation which has been shown over expressed and activated in hepatocellular carcinoma. To study whether the MEK/ERK cascade is involved in the motility of HCC, we examined the effect of MEK inhibitor and ERK2 silencing using monolayer wound‐healing assays and fluoroblock invasion systems. Evidence was provided that the MAPK cascade is a key transduction pathway which controls HCC cells motility and invasiveness. We could disconnect proliferation to motility using mitomycin C and we established that RNAi‐mediated inhibition of ERK2 led to strongly reduced cell motility. To improve our understanding, we analysed the regulation and the role of urokinase receptor (uPAR) in this process. We provided evidence that uPAR was under a MEK/ERK dependent mechanism and blocking uPAR activity using specific antagonist or inhibiting its expression by RNA interference which resulted in complete inhibition of motility. Moreover, we found in MAPK inhibited cultures and in uPAR silencing cells that p70S6K phosphorylation on residue Thr‐389 was significantly reduced, whereas Ser‐421/Thr‐424 phosphorylation did not change. We highlighted that the FRAP/mTOR pathway did not affect motility and Thr‐389 phosphorylation. Furthermore, we demonstrated that p70S6K inhibition by RNA interference completely inhibited hepatocarcinoma cell motility. Therefore, targeting uPAR and/or MEK/ERK/S6K by RNA interference could be a major therapeutic strategy for the future treatment of invasive hepatocarcinoma cells. J. Cell. Physiol. 212: 526–536, 2007. © 2007 Wiley‐Liss, Inc.

Country
France
Keywords

Mitogen-Activated Protein Kinase 1, Carcinoma, Hepatocellular, Mitogen-Activated Protein Kinase 3, MAP Kinase Signaling System, Mitomycin, Liver Neoplasms, Receptors, Cell Surface, Peptides, Cyclic, Receptors, Urokinase Plasminogen Activator, Cell Movement, Cell Line, Tumor, Nitriles, Butadienes, Humans, Neoplasm Invasiveness, RNA Interference, Phosphorylation, RNA, Small Interfering, [SDV.BC] Life Sciences [q-bio]/Cellular Biology, Protein Kinase Inhibitors, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Average
Top 10%
Top 10%
Related to Research communities
Cancer Research