Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2005 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Differential Expression of CD45 Isoforms Is Controlled by the Combined Activity of Basal and Inducible Splicing-regulatory Elements in Each of the Variable Exons

Authors: Alan, Tong; Jason, Nguyen; Kristen W, Lynch;

Differential Expression of CD45 Isoforms Is Controlled by the Combined Activity of Basal and Inducible Splicing-regulatory Elements in Each of the Variable Exons

Abstract

The human CD45 gene encodes five isoforms of a transmembrane tyrosine phosphatase that differ in their extracellular domains as a result of alternative splicing of exons 4-6. Expression of the CD45 isoforms is tightly regulated in peripheral T cells such that resting cells predominantly express the larger CD45 isoforms, encoded by mRNAs containing two or three variable exons. In contrast, activated T cells express CD45 isoforms encoded by mRNAs lacking most or all of the variable exons. We have previously identified the sequences within CD45 variable exon 4 that control its level of inclusion into spliced mRNAs. Here we map the splicingregulatory sequences within CD45 variable exons 5 and 6. We show that, like exon 4, exons 5 and 6 each contain an exonic splicing silencer (ESS) and an exonic splicing enhancer (ESE), which together determine the level of exon inclusion in naïve cells. We further demonstrate that the primary activation-responsive silencing motif in exons 5 and 6 is homologous to that in exon 4 and, as in exon 4, binds specifically to the protein heterogeneous nuclear ribonucleoprotein L. Together these studies reveal common themes in the regulation of the CD45 variable exons and provide a mechanistic explanation for the observed physiological expression of CD45 isoforms.

Keywords

Base Sequence, Models, Genetic, Amino Acid Motifs, Molecular Sequence Data, Exons, Lymphocyte Activation, Alternative Splicing, Cross-Linking Reagents, Enhancer Elements, Genetic, Gene Expression Regulation, Heterogeneous-Nuclear Ribonucleoprotein L, Mutagenesis, Mutation, Humans, Leukocyte Common Antigens, Protein Isoforms, RNA Interference, Gene Silencing, Protein Tyrosine Phosphatases, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    58
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
58
Top 10%
Top 10%
Top 10%
gold