Powered by OpenAIRE graph

Recruitment ofDrosophilaPolycomb-group proteins by Polycomblike, a component of a novel protein complex in larvae

Authors: Junyu Zhang; Richard S. Jones; Urmi Savla; Judith Benes;

Recruitment ofDrosophilaPolycomb-group proteins by Polycomblike, a component of a novel protein complex in larvae

Abstract

Polycomb-group (PcG) proteins are highly conserved epigenetic transcriptional repressors that play central roles in numerous examples of developmental gene regulation. Four PcG repressor complexes have been purified from Drosophila embryos: PRC1, PRC2, Pcl-PRC2 and PhoRC. Previous studies described a hierarchical recruitment pathway of PcG proteins at the bxd Polycomb Response Element (PRE) of the Ultrabithorax(Ubx) gene in larval wing imaginal discs. The DNA-binding proteins Pho and/or Phol are required for target site binding by PRC2, which in turn is required for chromosome binding by PRC1. Here, we identify a novel larval complex that contains the PcG protein Polycomblike (Pcl) that is distinct from PRC1 and PRC2 and which is also dependent on Pho and/or Phol for binding to the bxd PRE in wing imaginal discs. RNAi-mediated depletion of Pcl in larvae disrupts chromosome binding by E(z), a core component of PRC2, but Pcl does not require E(z) for chromosome binding. These results place the Pcl complex(PCLC) downstream of Pho and/or Phol and upstream of PRC2 and PRC1 in the recruitment hierarchy.

Related Organizations
Keywords

Cell Nucleus, Polycomb Repressive Complex 1, Genome, Gene Expression Regulation, Developmental, Chromatin, Chromosomes, Repressor Proteins, Larva, Chromatography, Gel, Animals, Drosophila Proteins, Wings, Animal, Drosophila, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    61
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
61
Top 10%
Top 10%
Top 10%