Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochimica et Biophy...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
Article . 2009 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

WNT signaling promotes Nkx2.5 expression and early cardiomyogenesis via downregulation of Hdac1

Authors: Tao Li; Nabeel A. Affara; Kangtao Ma; Chenguang Zhang; Zhiqiang Liu; Zhuqing Jia; Chunyan Zhou; +3 Authors

WNT signaling promotes Nkx2.5 expression and early cardiomyogenesis via downregulation of Hdac1

Abstract

The cardiac transcription factor NKX2.5 plays a crucial role in cardiomyogenesis, but its mechanism of regulation is still unclear. Recently, epigenetic regulation has become increasingly recognized as important in differentiation and development. In this study, we used P19CL6 cells to investigate the regulation of Nkx2.5 expression by methylation and acetylation during cardiomyocyte differentiation. During the early stage of differentiation, Nkx2.5 expression was upregulated, but the methylation status of the Nkx2.5 promoter did not undergo significant change; while the acetylation levels of histones H3 and H4 were increased, accompanied by a significant reduction in Hdac1 expression. Suppression of Hdac1 activity stimulated cardiac differentiation accompanied by increased expression of cardiac-specific genes and cell cycle arrest. Overexpression of Hdac1 inhibited cardiomyocyte formation and downregulated the expressions of Gata4 and Nkx2.5. Mimicking induction of the WNT pathway inhibited Hdac1 expression with upregulated Nkx2.5 expression. WNT3a and WNT3 downregulated the expression of Hdac1, contrary to the effect of SFRP2 and GSK3beta. Cotransfection of beta-catenin and Lef1 significantly downregulated the expression of Hdac1. Our data suggest that WNT signaling pathway plays important roles in the regulation of Hdac1 during the early stage of cardiomyocyte differentiation and that the downregulation of Hdac1 promotes cardiac differentiation.

Related Organizations
Keywords

Lymphoid Enhancer-Binding Factor 1, Down-Regulation, Histone Deacetylase 1, Histone Deacetylases, Cell Line, WNT, Histones, Mice, Animals, Myocytes, Cardiac, Promoter Regions, Genetic, P19CL6 cell, Molecular Biology, Cell Proliferation, Homeodomain Proteins, Epigenetic, Gene Expression Regulation, Developmental, Acetylation, Cell Differentiation, Cell Biology, Nkx2.5, DNA Methylation, HDAC1, Phenotype, Homeobox Protein Nkx-2.5, CpG Islands, Cardiomyogenesis, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    83
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
83
Top 10%
Top 10%
Top 10%
hybrid