Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The EMBO Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The EMBO Journal
Article . 2004 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The EMBO Journal
Article
Data sources: UnpayWall
The EMBO Journal
Article . 2005
versions View all 2 versions

Bcl-xL sequesters its C-terminal membrane anchor in soluble, cytosolic homodimers

Authors: Seon-Yong, Jeong; Brigitte, Gaume; Yang-Ja, Lee; Yi-Te, Hsu; Seung-Wook, Ryu; Soo-Han, Yoon; Richard J, Youle;

Bcl-xL sequesters its C-terminal membrane anchor in soluble, cytosolic homodimers

Abstract

Bcl-x(L) is a potent inhibitor of apoptosis. While Bcl-x(L) can be bound to mitochondria, a substantial fraction, depending on the cell type or tissue, is found in the cytosol of healthy cells. Gel filtration and crosslinking experiments reveal that, unlike monomeric Bax, Bcl-x(L) migrates in a complex of approximately 50 kDa in the cytosol. Co-immunoprecipitation experiments indicate that Bcl-x(L) in the cytosol forms homodimers. The C-terminal hydrophobic tails of two Bcl-x(L) molecules are involved in homodimer formation, and analysis of mutants demonstrates that the C-terminal lysine residue and the G138 residue lining the BH3-binding pocket are required for homodimerization. The flexible loop preceding the C-terminal tail in Bcl-x(L) is longer than that of several monomeric Bcl-2 family members and is a requisite for the homodimer formation. Bad binding to Bcl-x(L) dissociates the homodimers and triggers Bcl-x(L) binding to mitochondrial membranes. The C-terminal tail of Bcl-x(L) is also required to mediate Bcl-x(L)/Bax heterodimer formation. Both mitochondrial import and antiapoptotic activity of different Bcl-x(L) mutants correlate with their ability to form homodimers.

Keywords

Cytoplasm, Binding Sites, Molecular Sequence Data, Apoptosis, Peptide Fragments, Protein Structure, Secondary, Cell Line, Mitochondria, Proto-Oncogene Proteins c-bcl-2, Proto-Oncogene Proteins, Mutation, Animals, Humans, Amino Acid Sequence, Carrier Proteins, Protein Structure, Quaternary, Dimerization, Sequence Alignment, Protein Binding, bcl-2-Associated X Protein

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    144
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
144
Top 10%
Top 10%
Top 1%
gold