Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2002 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Multiple Regulatory Roles of a Novel Saccharomyces cerevisiae Protein, Encoded by YOL002c, in Lipid and Phosphate Metabolism

Authors: Igor V, Karpichev; Lizbeth, Cornivelli; Gillian M, Small;

Multiple Regulatory Roles of a Novel Saccharomyces cerevisiae Protein, Encoded by YOL002c, in Lipid and Phosphate Metabolism

Abstract

The yeast open reading frame YOL002c encodes a putative membrane protein. This protein is evolutionarily conserved across species, including humans, although the function of each of these proteins remains unknown. YOL002c is highly expressed in yeast cells that are grown in the presence of saturated fatty acids such as myristate. Furthermore, cells in which the YOL002c gene is disrupted grow poorly on this carbon source. These mutant cells are also resistant to the polyene antibiotic, nystatin. Gene chip analysis on yol002cDelta cells revealed that a variety of genes encoding proteins involved in fatty acid metabolism and in the phosphate signaling pathway are induced in this mutant strain. In addition, our studies demonstrated that in the disruption strain acid phosphatase activity is expressed constitutively, and the cells accumulate polyphosphate to much higher levels than wild-type cells. A homologous human protein is able to partially rescue these defects in phosphate metabolism. We propose that YOL002c encodes a Saccharomyces cerevisiae protein that plays a key role in metabolic pathways that regulate lipid and phosphate metabolism.

Related Organizations
Keywords

Nystatin, Antifungal Agents, Cell Membrane, Fatty Acids, Molecular Sequence Data, Membrane Proteins, DNA, Blotting, Northern, Lipid Metabolism, Lipids, Phosphates, Open Reading Frames, Phenotype, Mutation, Humans, Amino Acid Sequence, Conserved Sequence, DNA Primers, Oligonucleotide Array Sequence Analysis, Plasmids

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    65
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
65
Top 10%
Top 10%
Top 10%
gold