Histone H3 Lysine 4 di-methylation: A novel mark for transcriptional fidelity?
doi: 10.4161/epi.4.5.9369
pmid: 19633430
Histone H3 Lysine 4 di-methylation: A novel mark for transcriptional fidelity?
Although histone H3 Lysine 4 methylation (H3K4me) is strongly associated with active transcription, an increasing number of arguments indicate its repressive role in gene expression. Recent data in the mammalian and budding yeast systems have provided evidence for H3K4me2 and H3K4me3 tethering histone deacetylase complexes (HDACs) to modulate gene expression. In S. cerevisiae, this regulation is mediated by specific subunits within HDACs that recognize the methylation status of H3K4 allowing chromatin reorganization to attenuate or repress transcription. Albeit we are still a long way from understanding the mechanism and biological consequences, it is becoming clear that H3K4me at certain chromatin loci may prevent aberrant gene expression or modulate transcriptional response. This review will provide a brief overview of a novel interpretation of H3K4me and its outcome on transcription regulation and will suggest future challenges for the field of epigenetics.
Histones, Transcription, Genetic, Lysine, Animals, Humans, Acetylation, Promoter Regions, Genetic, Methylation
Histones, Transcription, Genetic, Lysine, Animals, Humans, Acetylation, Promoter Regions, Genetic, Methylation
40 Research products, page 1 of 4
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).67 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
