Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hepatologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hepatology
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hepatology
Article . 2013 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hepatology
Article . 2013
versions View all 3 versions

Reduced Hepatic Stellate Cell Expression of Kruppel-Like Factor 6 Tumor Suppressor Isoforms Amplifies Fibrosis During Acute and Chronic Rodent Liver Injury

Authors: Ghiassi-Nejad, Zahra; Hernandez-Gea, Viviana; Woodrell, Christopher; Lang, Ursula; Dumić Kubat, Katja; Kwong, Angela; Friedman, Scott;

Reduced Hepatic Stellate Cell Expression of Kruppel-Like Factor 6 Tumor Suppressor Isoforms Amplifies Fibrosis During Acute and Chronic Rodent Liver Injury

Abstract

Kruppel-like factor 6 (KLF6), a zinc finger transcription factor and tumor suppressor, is induced as an immediate-early gene during hepatic stellate cell (HSC) activation. The paradoxical induction of a tumor suppressor in HSCs during proliferation led us to explore the biology of wildtype KLF6 (KLF6WT) and its antagonistic, alternatively spliced isoform KLF6SV1 in cultured HSCs and animal models. The animal models generated include a global heterozygous KLF6 mouse ( Klf6+/− ), and transgenic mice expressing either hKLF6 WT or hKLF6 SV1 under the control of the Collagen α2 (I) promoter to drive HSC-specific gene expression following injury. The rat Klf6 transcript has multiple splice forms that are homologous to those of the human KLF6 gene. Following a transient increase, all rat Klf6 isoforms decreased in response to acute carbon tetrachloride (CCl4) liver injury and culture-induced activation. After acute CCl4, Klf6+/− mice developed significantly increased fibrosis and enhanced fibrogenic messenger RNA (mRNA) and protein expression. In contrast, HSC-specific transgenic mice overexpressing KLF6WT or KLF6 SV1 developed significantly diminished fibrosis with reduced expression of fibrogenic genes. Chromatin IP and quantitative reverse-transcription polymerase chain reaction in mouse HSCs overexpressing KLF6 WT demonstrated KLF6WT binding to GC boxes in promoters of Colα1 (I), Colα2 (I), and beta-platelet-derived growth factor receptor (β- Pdgfr ) with reduced gene expression, consistent with transcriptional repression by KLF6. Stellate cells overexpressing either KLF6WT or KLF6 SV1 were more susceptible to apoptotic stress based on poly (ADP-ribose) polymerase (PARP) cleavage. Conclusion: KLF6 reduces fibrogenic activity of HSCs by way of two distinct mechanisms, direct transcriptional repression of target fibrogenic genes and increased apoptosis of activated HSCs. These results suggest that following its initial induction, sustained down-regulation of KLF6 in liver injury may allow de-repression of fibrogenic genes and decreased stellate cell clearance by inhibiting apoptosis.

Related Organizations
Keywords

Liver Cirrhosis, Carbon Tetrachloride Poisoning, Kruppel-Like Transcription Factors, Apoptosis, Mice, Transgenic, stellate cells; liver fibrosis; KLF6, Rats, Rats, Sprague-Dawley, Mice, Proto-Oncogene Proteins, Hepatic Stellate Cells, Kruppel-Like Factor 6, Animals, Protein Isoforms

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 10%
bronze