EGG-LAYING DEFECTIVE MUTANTS OF THE NEMATODE CAENORHABDITIS ELEGANS
EGG-LAYING DEFECTIVE MUTANTS OF THE NEMATODE CAENORHABDITIS ELEGANS
ABSTRACT We have isolated 145 fertile mutants of C. elegans that are defective in egg laying and have characterized 59 of them genetically, behaviorally and pharmacologically. These 59 mutants define 40 new genes called egl, for egg-lay ing abnormal. Most of the other mutants are defective in previously identified genes. The egl mutants differ with respect to the severity of their egg-laying defects and the presence of behavioral or morphological pleiotropies. We have defined four distinct categories of mutants based on their responses to the pharmacological agents serotonin and imipramine, which stimulate egg laying by wild-type hermaphrodites. These drugs test the functioning of the vulva, the vulval and uterine muscles and the hermaphrodite-specific neurons (HSNs), which innervate the vulval muscles. Mutants representing 14 egl genes fail to respond to serotonin and to imipramine and are likely to be defective in the functioning of the vulva or the vulval and uterine muscles. Four mutants (representing four different genes) lay eggs in response to serotonin but not to imipramine and appear to be egg-laying defective because of defects in the HSNs; three of these four were selected specifically for these drug responses. Mutants representing seven egl genes lay eggs in response to serotonin and to imipramine. One egl mutant responds to imipramine but not to serotonin. The remaining egl mutants show variable or intermediate responses to the drugs. Two of the HSN-defective mutants, egl-1 and her-1(n695), lack HSN cell bodies and are likely to be expressing the normally male-specific program of HSN cell death. Whereas egl-1 animals appear to be defective specifically in HSN development, her-1(n695) animals exhibit multiple morphological pleiotropies, displaying partial transformation of the sexual phenotype of many cells and tissues. At least two of the egl mutants appear to be defective in the processing of environmental signals that modulate egg laying and may define new components of the neural circuitry that control egg laying.
- Massachusetts Institute of Technology United States
Male, Imipramine, Serotonin, Behavior, Animal, Oviposition, Disorders of Sex Development, Phenotype, Mutation, Animals, Female, Caenorhabditis elegans
Male, Imipramine, Serotonin, Behavior, Animal, Oviposition, Disorders of Sex Development, Phenotype, Mutation, Animals, Female, Caenorhabditis elegans
138 Research products, page 1 of 14
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).712 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 0.1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
