Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Proteomic...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Proteomics
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

In situ chemical cross-linking on living cells reveals CD9P-1 cis-oligomer at cell surface

Authors: Magali, André; Célia, Chambrion; Stéphanie, Charrin; Sabrina, Soave; Joëlle, Chaker; Claude, Boucheix; Eric, Rubinstein; +1 Authors

In situ chemical cross-linking on living cells reveals CD9P-1 cis-oligomer at cell surface

Abstract

Tetraspanins are integral membrane proteins involved in a variety of physiological and pathological processes. They associate with each other in multimolecular complexes containing numerous membrane proteins. As a first step towards the study of the supramolecular organization of tetraspanin complexes, we have implemented a proteomic approach based on in situ protein cross-linking on living cells followed by affinity purification of tetraspanin complexes. This allowed observing the presence of high molecular weight protein complexes that were characterized as containing CD9P-1/CD315 using LC-MS/MS. Western blot analyses and the use of different tags demonstrated the presence of CD9P-1 oligomer in cis-association at cell surface. A significant amount of CD9P-1 oligomer was observed on various cell types. We have shown that CD9P-1 self-associates independently from its association with tetraspanins. However, the expression level of CD9 or CD81 that associate directly and specifically with CD9P-1, positively modulates the cross-linking efficiency of CD9P-1. Thus, tetraspanins can play a role on CD9P-1 oligomerization status.

Keywords

Membrane Glycoproteins, Tetraspanins, Cell Membrane, Membrane Proteins, Models, Biological, Tetraspanin 29, Neoplasm Proteins, Tetraspanin 28, Cross-Linking Reagents, Isomerism, Antigens, CD, Multiprotein Complexes, Antigens, Surface, Protein Interaction Mapping, Humans, Amino Acid Sequence, Protein Multimerization, K562 Cells, Cells, Cultured, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Average