Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular Biologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Biology
Article . 2005 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions

Comparative Molecular Genetic Analysis of β-Fructosidases of Yeasts Saccharomyces

Authors: I. V. Korshunova; E. S. Naumova; G. I. Naumov;

Comparative Molecular Genetic Analysis of β-Fructosidases of Yeasts Saccharomyces

Abstract

To study the evolution of the polymeric β-fructosidase (invertase) genes (SUC) of yeasts Saccharomyces, new SUC gene of S. cariocanus was cloned and sequenced and the nucleotide and amino acid sequences were compared for all known β-fructosidases of Saccharomyces species. The proteins showed 90–97% homology. The most divergent was S. bayanus β-fructosidase. The results testified again to high conservation of yeast β-fructosidases. Transitions C-T prevail in the total spectrum of nucleotide substitutions observed in the coding regions of the SUC genes; most of these transitions are in the third codon position and cause no changes in the amino acid sequences of the encoded proteins. The six Saccharomyces species each carry one (probably, non-telomeric) β-fructosidase gene. SUC is on chromosome IX in S. cerevisiae, S. bayanus, S. kudriavzevii, S. mikatae, and S. paradoxus and in a translocation region on chromosome XV in S. cariocanus.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Average
Average
Average