Comparative Molecular Genetic Analysis of β-Fructosidases of Yeasts Saccharomyces
Comparative Molecular Genetic Analysis of β-Fructosidases of Yeasts Saccharomyces
To study the evolution of the polymeric β-fructosidase (invertase) genes (SUC) of yeasts Saccharomyces, new SUC gene of S. cariocanus was cloned and sequenced and the nucleotide and amino acid sequences were compared for all known β-fructosidases of Saccharomyces species. The proteins showed 90–97% homology. The most divergent was S. bayanus β-fructosidase. The results testified again to high conservation of yeast β-fructosidases. Transitions C-T prevail in the total spectrum of nucleotide substitutions observed in the coding regions of the SUC genes; most of these transitions are in the third codon position and cause no changes in the amino acid sequences of the encoded proteins. The six Saccharomyces species each carry one (probably, non-telomeric) β-fructosidase gene. SUC is on chromosome IX in S. cerevisiae, S. bayanus, S. kudriavzevii, S. mikatae, and S. paradoxus and in a translocation region on chromosome XV in S. cariocanus.
- State Research Center of the Russian Federation Russian Federation
7 Research products, page 1 of 1
- 2009IsAmongTopNSimilarDocuments
- 2011IsAmongTopNSimilarDocuments
- 2005IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).14 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
