Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The University of Me...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuroradiology
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
Neuroradiology
Article . 2022
versions View all 3 versions

Conventional MRI features can predict the molecular subtype of adult grade 2–3 intracranial diffuse gliomas

Authors: Arian Lasocki; Michael E. Buckland; Katharine J. Drummond; Heng Wei; Jing Xie; Michael Christie; Andrew Neal; +1 Authors

Conventional MRI features can predict the molecular subtype of adult grade 2–3 intracranial diffuse gliomas

Abstract

Abstract Purpose Molecular biomarkers are important for classifying intracranial gliomas, prompting research into correlating imaging with genotype (“radiogenomics”). A limitation of the existing radiogenomics literature is the paucity of studies specifically characterizing grade 2–3 gliomas into the three key molecular subtypes. Our study investigated the accuracy of multiple different conventional MRI features for genotype prediction. Methods Grade 2–3 gliomas diagnosed between 2007 and 2013 were identified. Two neuroradiologists independently assessed nine conventional MRI features. Features with better inter-observer agreement (κ ≥ 0.6) proceeded to consensus assessment. MRI features were correlated with genotype, classified as IDH-mutant and 1p/19q-codeleted (IDHmut/1p19qcodel), IDH-mutant and 1p/19q-intact (IDHmut/1p19qint), or IDH-wildtype (IDHwt). For IDHwt tumors, additional molecular markers of glioblastoma were noted. Results One hundred nineteen patients were included. T2-FLAIR mismatch (stratified as > 50%, 25–50%, or < 25%) was the most predictive feature across genotypes (p < 0.001). All 30 tumors with > 50% mismatch were IDHmut/1p19qint, and all seven with 25–50% mismatch. Well-defined margins correlated with IDHmut/1p19qint status on univariate analysis (p < 0.001), but this related to correlation with T2-FLAIR mismatch; there was no longer an association when considering only tumors with < 25% mismatch (p = 0.386). Enhancement (p = 0.001), necrosis (p = 0.002), and hemorrhage (p = 0.027) correlated with IDHwt status (especially “molecular glioblastoma”). Calcification correlated with IDHmut/1p19qcodel status (p = 0.003). A simple, step-wise algorithm incorporating these features, when present, correctly predicted genotype with a positive predictive value 91.8%. Conclusion T2-FLAIR mismatch strongly predicts IDHmut/1p19qint even with a lower threshold of ≥ 25% mismatch and outweighs other features. Secondary features include enhancement, necrosis and hemorrhage (predicting IDHwt, especially “molecular glioblastoma”), and calcification (predicting IDHmut/1p19qcodel).

Keywords

Adult, Brain Neoplasms, 610, Glioma, Magnetic Resonance Imaging, Isocitrate Dehydrogenase, Necrosis, Mutation, Humans, Glioblastoma, Biomarkers, Diagnostic Neuroradiology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Top 10%
Top 10%
Green
hybrid