Whirly transcription factors: defense gene regulation and beyond
pmid: 15708347
Whirly transcription factors: defense gene regulation and beyond
Members of the Whirly family of proteins are found throughout the plant kingdom and are predicted to share the ability to bind to single-stranded DNA. Arabidopsis and potato Whirly orthologs act as transcription factors that regulate defense gene expression; the Arabidopsis Whirly protein AtWhy1 contributes to both basal and specific defense responses. Analysis of the crystal structure of potato StWhy1 has provided insight into the DNA-binding mechanism of this family of proteins, their mode of action and possible autoregulation. There is evidence to suggest that Whirly proteins might play roles in processes other than defense responses and could function in the chloroplast as well as in the nucleus.
- University of Montreal Canada
- University of North Carolina at Chapel Hill United States
Models, Molecular, Transcription, Genetic, Gene Expression Regulation, Plant, Protein Conformation, Molecular Sequence Data, Amino Acid Sequence, Phylogeny, Protein Structure, Secondary, Plant Proteins, Transcription Factors
Models, Molecular, Transcription, Genetic, Gene Expression Regulation, Plant, Protein Conformation, Molecular Sequence Data, Amino Acid Sequence, Phylogeny, Protein Structure, Secondary, Plant Proteins, Transcription Factors
21 Research products, page 1 of 3
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).123 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
