Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 1987 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

A segment of GCN4 mRNA containing the upstream AUG codons confers translational control upon a heterologous yeast transcript.

Authors: P P, Mueller; S, Harashima; A G, Hinnebusch;

A segment of GCN4 mRNA containing the upstream AUG codons confers translational control upon a heterologous yeast transcript.

Abstract

GCN4 encodes a transcriptional activator in Saccharomyces cerevisiae that is regulated at the translational level. We show that an approximately 240-nucleotide segment from the GCN4 mRNA leader containing four AUG codons is sufficient to confer translational control typical of GCN4 upon a GAL1-lacZ fusion transcript. Regulation of the hybrid transcript is dependent upon multiple positive (GCN) and negative (GCD) trans-acting factors shown to regulate GCN4 expression post-transcriptionally. This result limits the target sequences for these factors to a small internal segment of the GCN4 mRNA leader. The elimination of AUG codons within this segment substantially reduces the usual derepressing effect of mutations in five GCD genes upon GCN4-lacZ expression. This supports the idea that the products of these negative regulatory genes act by modulating the effects of the upstream AUG codons on translation of GCN4 mRNA.

Related Organizations
Keywords

Base Sequence, Gene Expression Regulation, Transcription, Genetic, Genes, Fungal, Mutation, RNA, Messenger, Saccharomyces cerevisiae, Codon

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    81
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
81
Top 10%
Top 10%
Top 10%
bronze