Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochimiearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimie
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
CNR ExploRA
Article . 2010
Data sources: CNR ExploRA
versions View all 3 versions

Molecular dynamics analysis of the wild type and dF508 mutant structures of the human CFTR–nucleotide binding domain 1

Authors: Bisignano P; Moran O.;

Molecular dynamics analysis of the wild type and dF508 mutant structures of the human CFTR–nucleotide binding domain 1

Abstract

Mutations of CFTR (Cystic Fibrosis transmembrane Conductance Regulator), a membrane protein expressed in the epithelium that forms a chloride channel, cause a chronic, developmental and hereditary disease, known as Cystic Fibrosis. The most common mutation is the deletion of F508, a residue present in the first nucleotide binding domain (NBD1). We studied the thermodynamic properties of NBD1 wild type (WT) and mutant (dF508), starting from the crystallographic structures in the Protein Data Bank using the techniques of Molecular Dynamics. The two structures were similarly stable at room temperature, showed no change enthalpy or entropy, maintaining the same dimensions and the same order of magnitude of atomic fluctuations; the only difference was the energy of interaction with the solvent, in which the mutant appears slightly disadvantaged; these differences between the two models are at microscopic level and relate to local variations (in residues at 8 A from F508) of the surface exposed to the solvent. We also found a decrease in the mutant of about 30 times of affinity for ATP compared to WT.

Keywords

Nucleotides, Protein Conformation, Cystic Fibrosis Transmembrane Conductance Regulator, Molecular Dynamics Simulation, Crystallography, X-Ray, Protein Structure, Tertiary, Adenosine Triphosphate, Mutation, Solvents, Humans, Thermodynamics, Mutant Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Average
Average
Average