Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Journal of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
European Journal of Biochemistry
Article . 1995 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

The Myristoylated Alanine‐Rich C‐Kinase Substrate (MARCKS) is Sequentially Phosphorylated by Conventional, Novel and Atypical Isotypes of Protein Kinase C

Authors: Thomas Herget; Enrique Rozengurt; Dairyl J. C. Pappin; Peter J. Parker; Silke A. Oehrlein;

The Myristoylated Alanine‐Rich C‐Kinase Substrate (MARCKS) is Sequentially Phosphorylated by Conventional, Novel and Atypical Isotypes of Protein Kinase C

Abstract

The myristoylated alanine‐rich C‐kinase substrate (MARCKS) is the major protein kinase C (PKC) substrate in many cell types including fibroblasts and brain cells. Here we describe the phosphorylation of MARCKS and the site specificity for different PKC isotypes. Conventional (c)PKC β1, novel (n)PKC δ and nPKC ɛ efficiently phosphorylated the MARCKS protein in vitro. The Km values were extremely low, reflecting a high affinity between kinases and substrate. The apparent affinity of nPKC δ (Km= 0.06 μM) was higher than that of nPKC ɛ and cPKC β1 (Km= 0.32 μM). The rate of substrate phosphorylation was inversely correlated with affinity and decreased in the order nPKC ɛ > cPKC β1 > nPKC δ. Atypical (a)PKC ζ did not phosphorylate the intact MARCKS protein. However, a 25‐amino‐acid peptide deduced from the MARCKS phosphorylation domain, was efficiently phosphorylated by aPKC ζ as well as by the other three PKC.Site analysis revealed that only serine residues S152, S156 and S163 were phosphorylated, with S163 phosphorylated highest, followed by S156 and S152; in contrast, S160 and S167 were not phosphorylated. No further PKC phosphorylation sites could be detected in MARCKS. The phosphorylation pattern was independent of the type of PKC isotype used. Kinetic analysis showed, that MARCKS is sequentially phosphorylated in the order S156 > S163 > S152 by cPKC, nPKC and aPKC. There was no dramatic difference in the sequential phosphorylation of MARCKS detectable when comparing the four PKC isotypes. The results are discussed in the context of the functional significance of MARCKS phosphorylation.

Keywords

Isoenzymes, Kinetics, Intracellular Signaling Peptides and Proteins, Membrane Proteins, Proteins, Phosphorylation, Myristoylated Alanine-Rich C Kinase Substrate, Protein Kinase C

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    85
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
85
Top 10%
Top 10%
Top 10%
bronze