Powered by OpenAIRE graph

Acute and delayed renal protection against renal ischemia and reperfusion injury with A1adenosine receptors

Authors: Jin Deok, Joo; Mihwa, Kim; Patrick, Horst; Jeehee, Kim; Vivette D, D'Agati; Charles W, Emala; H Thomas, Lee;

Acute and delayed renal protection against renal ischemia and reperfusion injury with A1adenosine receptors

Abstract

We showed previously that activation of A1adenosine receptors (AR) protects against renal ischemia-reperfusion (IR) injury in rats and mice. In the heart, transient A1AR activation produces biphasic protective effects: acute protection wanes after several hours but protective effects return 24–72 h later (second window of protection). In this study, we determined whether A1AR activation produces delayed renal protection and elucidated the mechanisms of acute and delayed renal protection. A1AR wild-type mice were subjected to 30-min renal ischemia and 24 h of reperfusion to produce acute renal failure. Pretreatment with a selective A1AR agonist 2-chloro- N6-cyclopentyladenosine (CCPA; 0.1 mg/kg bolus ip) either 15 min or 24 h before renal ischemia protected against renal IR injury and reduced renal corticomedullary necrosis, apoptosis, and inflammation. Transient A1AR activation led to phosphorylation of extracellular signal-regulated protein kinase mitogen-activated protein kinase (ERK MAPK), Akt, and heat shock protein 27 (HSP27). Moreover, induction of HSP27 and Akt occurred with CCPA treatment. Inhibition of PKC with chelerythrine prevented acute but not delayed renal protection with A1AR activation. Moreover, deletion of PI3Kγ or inhibition of Akt, but not inhibition of ERK, prevented delayed and acute renal protection with A1AR activation. Inhibition of Gi/owith pertussis toxin obliterated both acute and delayed A1AR-mediated renal protection. In contrast to renal protection with delayed ischemic preconditioning, nitric oxide synthase activity was not induced with delayed A1AR-mediated renal protection. Therefore, transient activation of renal A1AR led to acute as well as delayed protective effects against renal IR injury via distinct signaling pathways.

Related Organizations
Keywords

Mice, Knockout, Kidney Cortex, Receptor, Adenosine A1, Blotting, Western, Nitric Oxide Synthase Type II, Apoptosis, DNA Fragmentation, Kidney Function Tests, Immunohistochemistry, Mice, Necrosis, Phosphatidylinositol 3-Kinases, Creatinine, Animals, Kidney Diseases, Mitogen-Activated Protein Kinases, Extracellular Signal-Regulated MAP Kinases, Proto-Oncogene Proteins c-akt, Heat-Shock Proteins, Protein Kinase C

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    56
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
56
Top 10%
Top 10%
Top 10%