Immune evasion by acquisition of complement inhibitors: The mould Aspergillus binds both factor H and C4b binding protein
Immune evasion by acquisition of complement inhibitors: The mould Aspergillus binds both factor H and C4b binding protein
Pathogenic fungi represent a major threat particularly to immunocompromised hosts, leading to severe, and often lethal, systemic opportunistic infections. Although the impaired immune status of the host is clearly the most important factor leading to disease, virulence factors of the fungus also play a role. Factor H (FH) and its splice product FHL-1 represent the major fluid phase inhibitors of the alternative pathway of complement, whereas C4b-binding protein (C4bp) is the main fluid phase inhibitor of the classical and lectin pathways. Both proteins can bind to the surface of various human pathogens conveying resistance to complement destruction and thus contribute to their pathogenic potential. We have recently shown that Candida albicans evades complement by binding both Factor H and C4bp. Here we show that moulds such as Aspergillus spp. bind Factor H, the splicing variant FHL-1 and also C4bp. Immunofluorescence and flow cytometry studies show that the binding of Factor H and C4bp to Aspergillus spp. appears to be even stronger than to Candida spp. and that different, albeit possibly nearby, binding moieties mediate this surface attachment.
- Leibniz Association Germany
- Hans Knöll Institute Germany
- Malmö University Sweden
- Innsbruck Medical University Austria
- Ernst Abbe University of Applied Sciences Jena Germany
Complement Inactivator Proteins, Aspergillus, Complement C4b-Binding Protein, Complement Factor H, Complement C3b Inactivator Proteins, Immunity, Humans, Protein Binding
Complement Inactivator Proteins, Aspergillus, Complement C4b-Binding Protein, Complement Factor H, Complement C3b Inactivator Proteins, Immunity, Humans, Protein Binding
11 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).62 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
