Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hypertensionarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hypertension
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2015
Data sources: IRIS Cnr
Hypertension
Article . 2015 . Peer-reviewed
Data sources: Crossref
Hypertension
Article . 2015
versions View all 4 versions

Efficacy of B-Type Natriuretic Peptide Is Coupled to Phosphodiesterase 2A in Cardiac Sympathetic Neurons

Authors: Li Dan; Lu ChiehJu; Hao Guoliang; Wright Hannah; Woodward Lavinia; Liu Kun; Vergari Elisa; +4 Authors

Efficacy of B-Type Natriuretic Peptide Is Coupled to Phosphodiesterase 2A in Cardiac Sympathetic Neurons

Abstract

Elevated B-type natriuretic peptide (BNP) regulates cGMP-phosphodiesterase activity. Its elevation is regarded as an early compensatory response to cardiac failure where it can facilitate sympathovagal balance and cardiorenal homeostasis. However, recent reports suggest a paradoxical proadrenergic action of BNP. Because phosphodiesterase activity is altered in cardiovascular disease, we tested the hypothesis that BNP might lose its efficacy by minimizing the action of cGMP on downstream pathways coupled to neurotransmission. BNP decreased norepinephrine release from atrial preparations in response to field stimulation and also significantly reduced the heart rate responses to sympathetic nerve stimulation in vitro. Using electrophysiological recording and fluorescence imaging, BNP also reduced the depolarization evoked calcium current and intracellular calcium transient in isolated cardiac sympathetic neurons. Pharmacological manipulations suggested that the reduction in the calcium transient was regulated by a cGMP/protein kinase G pathway. Fluorescence resonance energy transfer measurements for cAMP, and an immunoassay for cGMP, showed that BNP increased cGMP, but not cAMP. In addition, overexpression of phosphodiesterase 2A after adenoviral gene transfer markedly decreased BNP stimulation of cGMP and abrogated the BNP responses to the calcium current, intracellular calcium transient, and neurotransmitter release. These effects were reversed on inhibition of phosphodiesterase 2A. Moreover, phosphodiesterase 2A activity was significantly elevated in stellate neurons from the prohypertensive rat compared with the normotensive control. Our data suggest that abnormally high levels of phosphodiesterase 2A may provide a brake against the inhibitory action of BNP on sympathetic transmission.

Related Organizations
Keywords

Isatin, Male, Sympathetic Nervous System, brain, Recombinant Fusion Proteins, Stellate Ganglion, Second Messenger Systems, Rats, Sprague-Dawley, Heart Conduction System, Heart Rate, Natriuretic Peptide, Brain, Cyclic GMP-Dependent Protein Kinases, synaptic transmission, Animals, Calcium Signaling, Cyclic GMP, Cells, Cultured, sympathetic nervous system, Neurons, calcium, natriuretic peptide, Cyclic Nucleotide Phosphodiesterases, Type 2, Rats, Hypertension, Receptors, Atrial Natriuretic Factor

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Top 10%
bronze