Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
Data sources: UnpayWall
Development
Article . 2006 . Peer-reviewed
Data sources: Crossref
Development
Article . 2005 . Peer-reviewed
Data sources: Crossref
Development
Article . 2005
versions View all 3 versions

Mammary ductal morphogenesis requires paracrine activation of stromal EGFR via ADAM17-dependent shedding of epithelial amphiregulin

Authors: Mark D, Sternlicht; Susan W, Sunnarborg; Hosein, Kouros-Mehr; Ying, Yu; David C, Lee; Zena, Werb;

Mammary ductal morphogenesis requires paracrine activation of stromal EGFR via ADAM17-dependent shedding of epithelial amphiregulin

Abstract

Epithelial-mesenchymal crosstalk is essential for tissue morphogenesis, but incompletely understood. Postnatal mammary gland development requires epidermal growth factor receptor (EGFR) and its ligand amphiregulin (AREG),which generally must be cleaved from its transmembrane form in order to function. As the transmembrane metalloproteinase ADAM17 can process AREG in culture and Adam17–/– mice tend to phenocopy Egfr–/– mice, we examined the role of each of these molecules in mammary development. Tissue recombination and transplantation studies revealed that EGFR phosphorylation and ductal development occur only when ADAM17 and AREG are expressed on mammary epithelial cells, whereas EGFR is required stromally, and that local AREG administration can rescue Adam17–/–transplants. Several EGFR agonists also stimulated Adam17–/– mammary organoid growth in culture,but only AREG was expressed abundantly in the developing ductal system in vivo. Thus, ADAM17 plays a crucial role in mammary morphogenesis by releasing AREG from mammary epithelial cells, thereby eliciting paracrine activation of stromal EGFR and reciprocal responses that regulate mammary epithelial development.

Keywords

Mice, Knockout, EGF Family of Proteins, Gene Expression Profiling, Gene Expression Regulation, Developmental, Metalloendopeptidases, Epithelial Cells, ADAM17 Protein, Ligands, Amphiregulin, ErbB Receptors, Organoids, ADAM Proteins, Mice, Mammary Glands, Animal, Morphogenesis, Animals, Intercellular Signaling Peptides and Proteins, Female, Cells, Cultured, Glycoproteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    268
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
268
Top 1%
Top 1%
Top 1%
bronze