Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
Data sources: UnpayWall
Development
Article . 2012 . Peer-reviewed
Data sources: Crossref
Development
Article . 2012
versions View all 2 versions

Essential roles of the histone methyltransferase ESET in the epigenetic control of neural progenitor cells during development

Authors: Miyuki Nishi; Matsui Toshiyuki; Asuka Kamio-Miura; Yoichi Shinkai; Ryoichiro Kageyama; Toshiyuki Ohtsuka; Keiko Takemoto; +2 Authors

Essential roles of the histone methyltransferase ESET in the epigenetic control of neural progenitor cells during development

Abstract

In the developing brain, neural progenitor cells switch differentiation competency by changing gene expression profiles that are governed partly by epigenetic control, such as histone modification, although the precise mechanism is unknown. Here we found that ESET (Setdb1), a histone H3 Lys9 (H3K9) methyltransferase, is highly expressed at early stages of mouse brain development but downregulated over time, and that ablation of ESET leads to decreased H3K9 trimethylation and the misregulation of genes, resulting in severe brain defects and early lethality. In the mutant brain, endogenous retrotransposons were derepressed and non-neural gene expression was activated. Furthermore, early neurogenesis was severely impaired, whereas astrocyte formation was enhanced. We conclude that there is an epigenetic role of ESET in the temporal and tissue-specific gene expression that results in proper control of brain development.

Keywords

Base Sequence, Retroelements, Sequence Analysis, RNA, Neurogenesis, Brain, Down-Regulation, Gene Expression Regulation, Developmental, Cell Differentiation, Mice, Transgenic, Histone-Lysine N-Methyltransferase, Epigenesis, Genetic, Mice, Neural Stem Cells, Astrocytes, Animals, Protein Methyltransferases, GABAergic Neurons, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    134
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
134
Top 1%
Top 10%
Top 10%
bronze