Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Mammalian Genomearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mammalian Genome
Article . 1996 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Mammalian Genome
Article . 1997
versions View all 2 versions

Megencephaly: a new mouse mutation on chromosome 6 that causes hypertrophy of the brain

Authors: Donahue, L R; Cook, S A; Johnson, K R; Bronson, R T; Davisson, M T;

Megencephaly: a new mouse mutation on chromosome 6 that causes hypertrophy of the brain

Abstract

Megencephaly, enlarged brain, occurs in several acquired and inherited human diseases including Sotos syndrome, Robinow syndrome, Canavan's disease, and Alexander disease. This defect can be distinguished from macrocephaly, an enlarged head, which usually occurs as a consequence of congenital hydrocephalus. The pathology of megencephaly in humans has not been well defined, nor has the defect been reported to occur spontaneously in any other species. In this report we describe a recessive mutation in the mouse that results in a 25% increase in brain size in the first 8 months of life. We have determined that the megencephaly is characterized by overall hypertrophy of the brain, and not by hyperplasia of particular cell types or by hypertrophy of a singular tissue compartment. Edema and hydrocephalus are absent. This mutation has been mapped to mid-distal mouse Chromosome (Chr) 6 in a region homologous with human Chr 12.

Related Organizations
Keywords

Brain Diseases, Behavior, Animal, Brain: ab, Behavior-Animal, 610, Brain, Chromosome Mapping, Genes-Recessive, Genes, Recessive, Organ Size, Brain-Diseases: ge, Chromosomes, 576, Mice, Phenotype, Bromodeoxyuridine, Chromosome-Mapping, SUPPORT-U-S-GOVT-P-H-S, Animals, Organ-Weight, pa

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Top 10%
Average